The Florida State University College of Arts and Sciences Anova for Parameter Dependent Nonlinear Pdes and Numerical Methods for the Stochastic Stokes Equations

نویسندگان

  • ZHENG CHEN
  • Fred Huffer
  • Yanzhao Cao
چکیده

This dissertation includes the application of analysis-of-variance (ANOVA) expansions to analyze solutions of parameter dependent partial differential equations and the analysis and finite element approximations of the Stokes equations with stochastic forcing terms. In the first part of the dissertation, the impact of parameter dependent boundary conditions on the solutions of a class of nonlinear PDEs is considered. Based on the ANOVA expansions of functionals of the solutions, the effects of different parameter sampling methods on the accuracy of surrogate optimization approaches to PDE constrained optimization is considered. The effects of the smoothness of the functional and the nonlinearity in the PDE on the decay of the higher-order ANOVA terms are studied. The concept of effective dimensions is used to determine the accuracy of the truncated ANOVA expansions. Demonstrations are given to show that whenever truncated ANOVA expansions of functionals provide accurate approximations, optimizers found through a simple surrogate optimization strategy are also relatively accurate. The effects of several parameter sampling strategies on the accuracy of the surrogate optimization method are also considered; it is found that for this sparse sampling application, the Latin hypercube sampling method has advantages over other well-known sampling methods. Although most of the results are presented and discussed in the context of surrogate optimization problems, they also apply to other settings such as stochastic ensemble methods and reduced-order modeling for nonlinear PDEs. In the second part of the dissertation, we study the numerical analysis of the Stokes equations driven by a stochastic process. The random processes we use are white noise, colored noise and the homogeneous Gaussian process. When the process is white noise, we deal with the singularity of matrix Green’s functions in the form of mild solutions with

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of time-dependent foam drainage equation (FDE)

Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...

متن کامل

Analytical and Numerical Studies on Hydromagnetic Flow of Boungiorno Model Nanofluid over a Vertical Plate

MHD boundary layer flow of two phase model nanofluid over a vertical plate is investigated both analytically and numerically. A system of governing nonlinear partial differential equations is converted into a set of nonlinear ordinary differential equations by suitable similarity transformations and then solved analytically using homotopy analysis method and numerically by the fourth order Rung...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A spline collocation method for integrating a class of chemical reactor equations

. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...

متن کامل

Advanced Numerical Methods for Computing Statistical Quantities of Interest from Solutions of Spdes

Computational simulation-based predictions are central to science and engineering and to risk assessment and decision making in economics, public policy, and military venues, including several of importance to Air Force missions. Unfortunately, predictions are often fraught with uncertainty so that effective means for quantifying that uncertainty are of paramount importance. The research effort...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007